A novel 3D embedded gate field effect transistor – Screen-grid FET – Device concept and modelling
نویسندگان
چکیده
A novel 3D field effect transistor on SOI – screen-grid FET (SGrFET) – is proposed and an analysis of its DC behaviour is presented by means of 2D TCAD analysis. The novel feature of the SGrFET is the design of 3D insulated gate cylinders embedded in the SOI body. This novel gate topology improves efficiency and allows great flexibility in device and gate geometry to optimize DC performance. The floating body effect is avoided and the double gating row configuration controls short channel effects. The traditional intimate relationship between gate length and source-drain distance is removed, resulting in easy control of drain induced barrier lowering, improved output conductance and ideal sub-threshold slope. The separation between the gate fingers in each row is the key factor to optimize the performance, whilst downscaling of the source-drain distance and oxide thickness is not essential from an operational point of view. The device exhibits a huge potential in low power electronics as given by an efficiency of transconductance ‘‘gm/Id’’ of 39 S/A at VDS = 100 mV over a large gate voltage range and at a source-drain distance of 825 nm. We present the modelling results of the influence of gate cylinder distribution in the channel, channel doping, gate oxide thickness, gate finger distance and source-drain distance on the characteristics of the device. 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Switching Performance of Nanotube Core-Shell Heterojunction Electrically Doped Junctionless Tunnel Field Effect Transistor
Abstract: In this paper, a novel tunnel field effect transistor (TFET) is introduced, thatdue to its superior gate controllability, can be considered as a promising candidate forthe conventional TFET. The proposed electrically doped heterojunction TFET(EDHJTFET) has a 3D core-shell nanotube structure with external and internal gatessurrounding the channel that employs el...
متن کاملPerformance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor
In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...
متن کاملImprovement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering
In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce th...
متن کاملA Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor
Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...
متن کاملRepresentation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics
In this paper, we propose a new heterostructure dual material gate junctionless field-effect transistor (H-DMG-JLFET), with negative differential resistance (NDR) characteristic. The drain and channel material are silicon and source material is germanium. The gate electrode near the source is larger. A dual gate material technique is used to achieve upward band bending in order to access n-i-p-...
متن کامل